FHZDZTR0139 土壤 砷 锑 铋 硒 碲的测定 乙醇增强氢化物发生 ICPMS 法

F-HZ-DZ-TR-0139

土壤—砷 锑 铋 硒 碲的测定—乙醇增强氢化物发生 ICP-MS 法

1 范围

本方法适用于地质样品土壤及生物和植物样品中砷,锑,铋,硒,碲的测定。方法的检出限为(3σpg/mL): As 71, Sb 10, Bi 9, Se 6, Te 8。

2 原理

用电感耦合等离子体(ICP)作为离子源,借助电感耦合等离子体-质谱(ICP-MS)仪器分辨率高,干扰少,检出限低的特点,采用乙醇增强氢化物发生系统与 ICP-MS 仪器联用(见图 1),实现了在折衷条件下同时测定土壤试样中较难测定的砷等 5 个元素,其灵敏度比直接溶液雾化法提高 4~17 倍。并详细研究了硼氢化钠浓度,酸度,载气流速对分析元素的影响,以及乙醇增强效应的最佳浓度和过渡元素对氢化物元素的化学干扰。

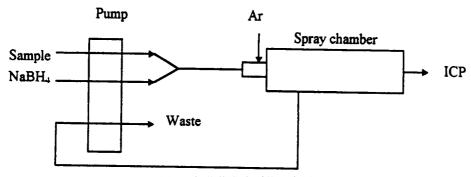


图 1 氢化物发生系统示意图

- 3 试剂和材料
- 3.1 盐酸(ρ约 1.19g/mL)。
- 3.2 硝酸(ρ约 1.42g/mL)。
- 3.3 氢氟酸(ρ约 1.15g/mL)。
- 3.4 高氯酸(ρ约 1.67g/mL)。
- 3.5 过氧化氢(30%)。
- 3.6 无水乙醇。
- 3.7 碘化钾。
- 3.8 硫脲。
- 3.9 抗坏血酸。
- 3.10 硼氢化钠。
- 3.11 还原剂: 硼氢化钠[5g/L, 内含 0.5g/L 氢氧化钠和乙醇(4+96), 现用现配]。
- 3.12 预还原剂: 硫脲+抗坏血酸(80g/L+100g/L, 现用现配)。
- 3.13 亚沸蒸馏水。
- 4 仪器
- 4.1 电感耦合等离子体-质谱(ICP-MS)仪器, 仪器参数列于表 1。
- 4.2 氢化物发生系统。

采用仪器原有的溶液雾化系统的雾化室作为气液分离器,用一个经改进的同心雾化器取代原气动雾化器,将引入硼氢化钠的毛细管与原有的试样引入管通过 Y 型三通管与一根混合线圈相连,硼氢化钠与试样溶液分别由多道蠕动泵送入,经过混合线圈并由改进的雾化器引

入雾室进行气液分离,气态物由氩气送入炬管激发,废液经蠕动泵排出(见图 1)。

表 1 HG-ICP-MS 仪器工作参数

	KI III III KIII					
项目	参数	项目	参数			
射频发生器		质谱仪及测量条件				
输出功率	1350W	采样锥(Ni)	1.2mm			
反射功率	<5W	截取锥(Ni)	1.0mm			
冷却气(Ar)	15L/min	分辨率	0.8μ			
辅助气(Ar)	1.5L/min	分析方式	脉冲计数			
载气(Ar)	0.8L/min	扫描次数	5			
氢化物发生条件		测量点/峰	5			
蠕动泵速度	100r/min	扫描时间/u	2s			
样品提升量	1.8mL/min	测量次数 3				
还原剂提升量	1.8mL/min	校准方式	外标法			
还原剂浓度	0.5%	内标元素	Ge			

5 试样的制备

将样品粉碎至粒度 100μm~74μm, 在干净的房间风干。称样测定时, 另称取一份试样测定吸附水, 最后换算成烘干样计算结果。

6 操作步骤

6.1 试样溶液的制备

实验了王水水浴溶解和微波高压密封消解两种方法。微波炉为实验室微波炉系统,HPV80高压消解罐。

方法 1: 称取 0.25g 风干土样(精确至 0.0001g)于 25mL 比色管中,加入 5mL 新配制的王水,在水浴中加热溶解 2h。将溶液冷却至室温,取出试管用亚沸蒸馏水稀释至刻度,备用。分取上述制备好的溶液 2mL 到 10mL 比色管中,加入 1mL 盐酸,锗内标 500ng,5mL 预还原剂,然后用亚沸蒸馏水稀释至刻度,室温下放置 1h。此溶液用于测定砷,锑,铋。

方法 2: 称取 0.25g 风干土样(精确至 0.0001g)于 HPV80 消解罐中,加入 4mL 硝酸, 0.5mL 过氧化氢, 0.5mL 氢氟酸, 1mL 高氯酸,用紧盖工具拧紧盖。按以下程序重复消解 2~3 次; 10%功率 10min, 25%功率 10min, 40%功率 10min, 50%功率 20min。取出消解罐并冷却,用开盖工具打开盖,将罐内溶液全部倒入聚四氟乙烯坩埚中,在电炉上加热至刚冒白烟,取下加入 1mL 硝酸,继续加热至刚冒白烟,重复加硝酸 2~3 次,使有机物完全破坏,最后加入1mL 硝酸,用亚沸水冲入到 25mL 比色管中备用。分取 5mL 溶液于 10mL 比色管中,加入锗内标 500ng,4mL 盐酸,用亚沸水稀释至刻度并在水浴中加热 30min,此溶液用于测定硒、碲。

6.2 标准溶液的制备

首先用光谱纯金属或化合物制备单个元素的储备液。然后稀释成浓度为 0,10ng/mL 的混合元素的标准溶液,并含内标锗 500ng/mL,酸度和预还原剂等介质严格与试样一致。

6.3 分析元素同位素及干扰信息列表 2。

表 2 分析同位素及干扰信息

元素	质荷比(m/z)	相对丰度(%)	干扰信息
As	75	100	40 Ar 35 Cl $^{+}$
Bi	209	100	
Sb	121	57.25	
Sb	123	42.75	¹²³ Te(0.87)
Se	77	7.50	⁴⁰ Ar ³⁷ Cl ⁺ , ⁴⁰ Ar ³⁶ ArH ⁺
Se	78	23.61	⁷⁰ Ar, ³⁸ Ar, ⁷⁸ Kr(0.35)
Se	82	8.84	⁸² Kr(11.56)
Те	125	6.99	
Те	126	18.71	¹²⁶ Xe(0.09)
Те	128	31.79	¹²⁸ Xe(1.92)
Те	130	34.49	¹³⁰ Xe(4.08), ¹³⁰ Ba(0.10)

7 结果计算

将测出各元素的结果,按下式进行水份校正。

$$w(x) = \frac{\rho}{m \times K}$$

w(x)——某个被测出元素的质量分数, μg/g。

 ρ ——测出元素的质量浓度, μ g/g。

m——测定样品的质量,g。

K——水份系数。

8 精密度

取一个试样重复测定 10 次,其 RSD%为: As 1.21%, Bi 1.60%, Sb 2.16%, Se 2.44%, Te 2.26%。

注 1: 本法首先将乙醇作增强剂用于 HG-ICP-MS 中,使砷,锑,硒,碲的灵敏度提高 4~17 倍,比 AFS 法的检出限低 1~2 个数量级。

注 2: 本法选择能形成氢化物的锗为内标元素,不仅显著地改善了精密度,而且也提高了测定的准确度。

- 9 参考文献
- [1] 李冰等. 乙醇增强氢化物发生 ICP-MS 法测定砷锑铋硒和碲的研究. 一九九七年度岩矿 测试科研及试验成果汇编.地矿部岩矿测试技术研究所, 1998, 12~21.